Search results

Search for "electron irradiation" in Full Text gives 67 result(s) in Beilstein Journal of Nanotechnology.

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • architecture on the deposit formation in electron irradiation experiments that mimic FEBID and cryo-FEBID processes. Electron-stimulated desorption and post-irradiation thermal desorption spectrometry were used to obtain insight into the fate of the ligands upon electron irradiation. As a key finding, the
  • deposits obtained from Fe(CO)4MA and Fe(CO)5 were surprisingly similar, and the relative amount of carbon in deposits prepared from Fe(CO)4MA was considerably less than the amount of carbon in the MA ligand. This demonstrates that electron irradiation efficiently cleaves the neutral MA ligand from the
  • precursor. In addition to deposit formation by electron irradiation, the thermal decomposition of Fe(CO)4MA and Fe(CO)5 on an Fe seed layer prepared by EBID was compared. While Fe(CO)5 sustains autocatalytic growth of the deposit, the MA ligand hinders the thermal decomposition in the case of Fe(CO)4MA. The
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • using electron beams and gas precursors was not widely recognized at the time when earlier studies regarding morphological changes in silica upon the electron irradiation were performed [24]. Therefore, neither of the electron-beam-induced changes into the SiO2 surface during the water purification of
  • dissociation products of water molecules and thus could be actively involved in the SiO2 removal process. Our results, showing topographical changes in SiO2 are partially consistent with former studies reported by Steven Kalceff et al. [24] of either swelling or deswelling of a silica substrate upon electron
  • irradiation. Their findings on the volume decrease or increase of silica crystalline and amorphous phases were explained by the electromigration of oxygen atoms and densification of surface regions. Yet, taking into account the supplied data one cannot exclude the presence of water residues in the SEM chamber
PDF
Album
Full Research Paper
Published 07 Feb 2024

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • nanopatterning of metal surfaces, but it is a complicated and expensive multistep process [8]. Electron beam induced deposition (EBID) is a direct-write lithography technique, which is capable of creating 2D and free-standing 3D nanostructures by using electron irradiation to dissociate volatile precursor
  • residual hydrocarbons by electron irradiation in scanning electron microscopy (SEM) vacuum chambers have been reported in several studies [12][13][14][15]. Hydrocarbon contamination from samples and vacuum pump oils is known to be ever present in vacuum chambers of electron microscopes [16][17][18]. The
  • fields of nanotechnology [33][34][35][36]. Therefore, understanding the process of nanostructure formation from hydrocarbon deposition on metal surfaces via focused electron irradiation is important. In this work we sought to deepen that understanding by observing how changing individual irradiation
PDF
Album
Full Research Paper
Published 22 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • challenges to be tackled in the future. First, the detailed structures of the networks@crystal are difficult to investigate. The atomic structures of the composites are easily lost during observation because the coordination polymers are not stable under electron irradiation. Moreover, when the composites
PDF
Album
Review
Published 12 Aug 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • tailor surface properties [13][14][15][16][17][18][19][20]. These monolayers can be modified with lithographic tools, such as scanning probes [21], UV light, X-rays, ions, or electron beams [22][23][24]. A particularly versatile nanofabrication scheme utilizes electron irradiation of aromatic SAMs to
  • electron energy loss spectroscopy (HREELS) [53][54], Raman spectroscopy [55], and low-energy electron microscopy (LEEM) [56] as well as by theoretical analysis [57][58][59]. It is now well established that electron irradiation leads to cleavage of C–H and S–H bonds, followed by the formation of C–C bonds
  • the pristine monolayer. Features similar to dark spots with a diameter of ≈10 Å were observed by Kondoh et al. on the methylthiolate/Au(111) surface after electron irradiation at 4 keV and assigned as sulfur species after cleavage of S–C bonds at the interface [69]. In our case, a higher magnification
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • electron irradiation field, the fragmentation cross section, as well as the energy deposited into the system during the fragmentation process are specified. The initial state of the adsorbed molecules to be exposed to electron-beam irradiation is created in step 3. This follows by the multiple cycling of
  • interaction is omitted in order to improve the computational performance. Step 2. Electron irradiation parameters Parameters of the electron interaction with a substrate and precursor molecules should be determined in step 2 of the protocol shown in Figure 1. First, one needs to determine the spatial
  • and thermalization simulations for each new layer are performed in the same way as for the initial precursor layer. Step 5. Post-deposition processing Additional processing of the FEBID-grown structures, namely post-deposition electron irradiation or high-temperature annealing with or without
PDF
Album
Full Research Paper
Published 13 Oct 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • electronic thermal conductivity of this material [72]. Additional defect engineering studies Defect formation in supported and free-standing multiwalled carbon nanotubes upon irradiation with both 25 keV helium and neon ions has also been investigated, since ion (and electron) irradiation can be used to
PDF
Album
Review
Published 02 Jul 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • both precursors [14][15]. It is known that electron irradiation of aromatic SAMs causes the cleavage of C–H bonds and, thus, the formation of reactive, that is, activated C species. This is found to be the starting point for the formation of laterally cross-linked CNMs via the formation of C–C linked
  • differ in the waiting time between electron irradiation and precursor dosage. All twelve structures were exposed to 3.0 × 10−7 mbar Fe(CO)5 background pressure for 3 h 29 min. In addition, local AE spectra were acquired at the positions indicated with the correspondingly colored stars. After a comparably
  • dissociation of Fe(CO)5 is decreasing over time. The longer the waiting time between electron irradiation and precursor dosage, the higher is the degree of deactivation of the activated sites. If one assumes that the number of active sites increases with electron dose, the dose-dependent behavior observed in
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • nanostructures [1][2][3][4]. This mask-less nanofabrication technique uses gaseous molecules as precursors. The gas molecules are introduced in the specimen chamber of a scanning electron microscope (SEM), adsorb onto a substrate, and dissociate upon electron irradiation, leaving a solid deposit on the substrate
  • , and decompose in a clean manner to the desired products. Furthermore, it should be inexpensive and easy to prepare, non-toxic, and easy to store and handle [17]. The choice of such molecules requires a compromise to be made between volatility, stability, and reactivity induced by electron irradiation
  • under electron irradiation. However, this trend is not extended to the recently reported silver carboxylates [39][40]. In gold(I) complexes, only two ligands are present in the coordination sphere, a neutral ligand L and an anionic ligand X. Both ligands influence the complex stability, with an
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • samples. These membranes are made from aromatic molecules, typically from self-assembled monolayers. Upon electron irradiation, cross-linking of the molecules is induced. A mechanically stable membrane is formed, which can be transferred onto any other substrate, such as TEM grids [22][23]. Since CNMs
  • with line integration of 64 lines. The field of view was set to 10 µm for the thin carbon membrane and to 15 µm for the thick membrane. The carbon nanomembranes (CNMs) were formed by low-energy electron irradiation of aromatic self-assembled monolayers (thin CNMs) or spin coated layers of aromatic
  • molecules (thick CNMs). The electron irradiation leads to a crosslinking of the aromatic molecules and results in an amorphous membrane whose thickness is defined by the initial aromatic layer. CNMs were transferred onto TEM grids (Quantifoil Multi A) using a sacrificial layer of poly(methyl methacrylate
PDF
Album
Full Research Paper
Published 26 Feb 2021

Fusion of purple membranes triggered by immobilization on carbon nanomembranes

  • René Riedel,
  • Natalie Frese,
  • Fang Yang,
  • Martin Wortmann,
  • Raphael Dalpke,
  • Daniel Rhinow,
  • Norbert Hampp and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 93–101, doi:10.3762/bjnano.12.8

Graphical Abstract
  • electron irradiation-induced cross-linking of a self-assembled monolayer (SAM) of 4′-nitro-1,1′-biphenyl-4-thiol (NBPT) and second, purple membrane (PM) containing genetically modified bacteriorhodopsin (BR) carrying a C-terminal His-tag. The NBPT-CNM was further modified to carry nitrilotriacetic acid
PDF
Album
Supp Info
Full Research Paper
Published 22 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • doped with the fluorescent nitrogen-vacancy defect as well as rare earth metal-based nanoparticles regarding bleaching under the ion beam. Although they are believed to be photostable under electron irradiation, the IL of the nanoscale diamonds decreased significantly under the ion beam even at doses
PDF
Album
Review
Published 04 Jan 2021

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • complexes were compared to the widely used commercially available precursor MeCpPtMe3. The design of Pt(CO)2X2 takes advantage of the known tendency for CO and halogens to dissociate from metal centres upon electron irradiation [14][15][16]. Other organometallic compounds that include a halide and CO
  • ligands, such as (η3-C3H5)Ru(CO)3Br, showed the loss of CO upon electron irradiation [17][18], as have CO-containing precursors without halides such as W(CO)6 [19] and Co(CO)3NO [20]. In addition, the use of four-coordinate Pt(II) centres minimizes the number of metal–ligand bonds that need to be broken
  • presence of water in the SEM. In HV, the deposits are almost halogen free but contain a lot of carbon, whereas in UHV the deposits are almost carbon-free but suffer from a large halogen content. The water present in HV could play a role in two different ways. First, upon electron irradiation, the water is
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • sensitivities to helium ion irradiation than to electron irradiation in terms of charge per area [14]. Patterning resolution down to 4 nm has been demonstrated on HSQ resist [15], surpassing electron beam lithography, which greatly suffers from the proximity effect. In a combined AFM–HIM setup, the AFM could be
PDF
Album
Full Research Paper
Published 26 Aug 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • intrinsic defects related to electron irradiation. After these experiments, the hybrid density functional was used to simulate common as-grown vacancy and antisite defect properties demonstrating that they require high formation energies. Thus it is unlikely they could form from the typical growth
  • peroxymonosulfuric acid (H2O2:H2SO4) and with an additional step of phosphoric and sulfuric acid (H2SO4:H3PO4), where this second method was found to increase the estimated density of the SPEs from 0.09 to 0.54/µm2, indicating that thinner and edgier flakes provide higher SPE density; electron irradiation [105][119
  • tentatively assign a larger variability of ZPLs in methods involving annealing and chemical etching (see Table 4), while methods like electron irradiation, ion irradiation, and neutron irradiation tend to have emission more likely in the region of 580 nm if annealing is not performed. Electron and ion
PDF
Album
Review
Published 08 May 2020

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • evolution of Bi2WO6 under in situ electron irradiation. Our experimental results reveal that under 200 keV electron irradiation, the breaking of relatively weak Bi–O bonds leads to the formation of oxygen vacancies in Bi2WO6. With prolonged electron irradiation, the reduced Bi cations tend to form Bi
  • clusters on the nanoflake surfaces, and the oxygen atoms are released from the nanoflakes, while the W–O networks reconstruct to form WO3. A possible mechanism that accounts for the observed processes of Bi cluster formation and oxygen release under energetic electron irradiation is also discussed
  • . Keywords: bismuth tungsten oxide; electron diffraction; electron irradiation; nanoflakes; oxygen vacancies; Introduction Bi2WO6 has drawn great interest regarding its physical properties such as the piezoelectric effect and ferroelectricity with large spontaneous polarization and high Curie temperature [1
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • center of the irradiated area) with respect to the non-irradiated area of the Au layer (Figure 6). It should be noted, that the edges of the irradiated area are topographically elevated and exhibit a decreased surface potential because of the higher electron irradiation dose at the turning points of the
  • diffusion) and Mo reacts with oxygen to produce MoOx. The UPS information is obtained from the topmost 2–3 nm, i.e., from the oxidized MoOx layer (30 nm of Mo was sputtered on the Bi2Se3 for UPS measurements). The 9 nm Mo layer after SEM electron irradiation led to the formation of MoSe2 (through the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • intense electron irradiation if the lithography takes place under ambient conditions. Unlike tSPL, FE-eSPL structuring is a cold process due to the low power density which has advantages when patterning over thin active device regions, which is common in R&D applications. In this respect, FE-eSPL avoids
PDF
Album
Review
Published 14 Nov 2018

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • the order of 10−6 emu or less [24][25][26]). In previous papers, we reported a multi-characterization of HOPG with electron-induced defects [27][28]. Our Raman results showed that electron irradiation induced the appearance of the D band, an effect that was assigned to distortions in the electronic
  • dose above which DIM decreases again. They further suggest that DIM in HOPG is most likely not a volume effect, but a surface effect due to hydrogen present at the surface. This could explain why DIM can be triggered with electron irradiation by the formation of hydrogen-chemisorption defects at the
PDF
Album
Full Research Paper
Published 19 Oct 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • ]. In general, single-wall carbon nanotubes (SWCNTs) have the tendency to group in bundles. By electron irradiation the different CNTs can be linked by inter-tube bridging, which allows the bending modulus to be increased by a factor 30 [5]. Similar results can be obtained by ion irradiation. Si
  • keV He+ irradiation for a relatively low fluence of 8 × 1014 ions/cm2 before the sample turns amorphous [13]. Transforming graphene into fullerenes has been carried out by electron irradiation [14], and graphitic nanostripes have been obtained from SiC by MeV Ta or Pb irradiation [15]. In addition
  • ][21], C+ [21][22], N+ [22], Si+ [22], Kr+ [23], and Ar+ irradiation [21][22]. The same is true for defects produced by electron irradiation [24]. Electron diffraction pattern can be used to quantify the degree of amorphisation [13]. Raman spectroscopy has also been widely used to investigate different
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Chemistry for electron-induced nanofabrication

  • Petra Swiderek,
  • Hubertus Marbach and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2018, 9, 1317–1320, doi:10.3762/bjnano.9.124

Graphical Abstract
  • simultaneous injection of a reactive gas [25]. Also, it is demonstrated that the metal content of a Au deposit can be significantly increased by continued electron irradiation and a final boost of oxygen plasma cleaning [26] and that the purity of deposits from different metals is enhanced by thermal treatment
PDF
Editorial
Published 30 Apr 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • (such as annealing, post-deposition annealing in O2, exposure to atomic hydrogen, post-deposition electron irradiation) were proposed as viable techniques [7][8], but these approaches are not completely free from reproducibility issues. Therefore, to improve the metal content and to address the nature
PDF
Album
Full Research Paper
Published 23 Feb 2018

Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

  • Ragesh Kumar T P,
  • Paul Weirich,
  • Lukas Hrachowina,
  • Marc Hanefeld,
  • Ragnar Bjornsson,
  • Helgi Rafn Hrodmarsson,
  • Sven Barth,
  • D. Howard Fairbrother,
  • Michael Huth and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2018, 9, 555–579, doi:10.3762/bjnano.9.53

Graphical Abstract
  • are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment
  • ), reflection-absorption IR spectroscopy (RAIRS), and/or high-resolution electron energy loss spectroscopy (HREELS), while mass spectrometry has been used to identify gas phase species generated as a result of electron irradiation. As such the surface science experiments represent an increased level of
  • conditions (Pbase < 4 × 10−9 mbar). Ultra-thin (<2–3 nm) H2FeRu3(CO)13 films were deposited onto a cooled, sputter-cleaned Au substrate before being exposed to 500 eV incident electrons generated by a commercial flood gun. The effect of electron irradiation on the adsorbed H2FeRu3(CO)13 molecules as
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2018

Gas-assisted silver deposition with a focused electron beam

  • Luisa Berger,
  • Katarzyna Madajska,
  • Iwona B. Szymanska,
  • Katja Höflich,
  • Mikhail N. Polyakov,
  • Jakub Jurczyk,
  • Carlos Guerra-Nuñez and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 224–232, doi:10.3762/bjnano.9.24

Graphical Abstract
  • )/synthesized = 242−244 °C/247 °C). Previous measurements indicated thermal stability of the precursor in the gas phase up to 220 °C [18]. Upon electron irradiation of the pristine solid precursor compound, a strong increase in silver content from 9 to >40 atom % was observed. Thermal stability and electron
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2018
Other Beilstein-Institut Open Science Activities